下面小編跟大家一起了解考研數學高數的9個高頻易錯點,希望對大家的學習有所幫助,
眾所周知,高數的知識點又多又雜,不可避免的會出現一些自己搞錯的地方。為此,小編整理了考研數學中高數的9個高頻易錯點,希望對大家有所幫助。
1.函數連續是函數極限存在的充分條件。若函數在某點連續,則該函數在該點必有極限。若函數在某點不連續,則該函數在該點不一定無極限。
2,若函數在某點可導,則函數在該點一定連續。但是如果函數不可導,不能推出函數在該點一定不連續。
3.基本初等函數在其定義域內是連續的,而初等函數在其定義區間上是連續的。
4.在一元函數中,駐點可能是極值點,也可能不是極值點。函數的極值點必是函數的駐點或導數不存在的點。
5.無窮小量與有界變量之積仍是無窮小量。
7.在求極限的問題中,極限包括函數的極限和數列的極限,但在考試中一般出的都是函數的極限,求函數的極限中,主要是掌握公式,有些不常見的公式一定要記熟,這種類型的題一般屬于簡單題,但往更難一點的方向出題的話,它會和變上限的定積分聯系在一起出題。
8.在運用兩個重要極限求函數極限的時候,一定要首先把所求的式子變換成類似于兩個重要極限的形式,其次還需要看自變量的取極 限的范圍是否和兩個重要極 限一樣。
9.介值定理和零點定理的巧妙運用關鍵在于,觀察和變換所要證明的式子的形式,構造輔助函數。